MeCabの辞書に単語が重複した場合の挙動を調べてみた

以前、MeCabのユーザー辞書を作る方法を紹介しました。
参考: MeCabでユーザー辞書を作って単語を追加する

システム辞書に無い単語をユーザー辞書に登録して使えば、当然システム辞書の単語とユーザー辞書の単語の両方を使って形態素解析が行えるようになります。
この時にもし、システム辞書に登録済みの単語を改めてユーザー辞書に登録してしまったらどのような挙動になるのか気になったのでドキュメントを確認してみましたがそれらしい記載がありませんでした。(他サイトにユーザー辞書がシステム辞書を上書きするという情報もあったのですが、本当にそうなのか疑わしいとも思いました。)
そこで実験してみようと思ったのがこの記事です。

また、MeCabは起動時にシステム辞書は1つしか指定できませんが、ユーザー辞書は複数指定できます。その複数のユーザー辞書に登録したらどういう挙動になるのかも確認しました。
それとついでにですが、1個のユーザー辞書に同じ単語を複数回登録した場合(これはもうただの辞書作成時のミスでしかあり得ないのですが。)の事象も見ています。

え、システム辞書に登録されてる単語をユーザー辞書に登録することなんてある?と思われる方もいらっしゃると思いますが、これは普通にあります。気づかずに登録してしまった、という場合はもちろんですが、解析結果の誤りを修正するために生起コストの設定を変えたいというケースがあるのです。

例えば、IPA辞書そのままだと、「りんごジュース」の形態素解析結果は次のように誤ったものになります。

$ echo りんごジュース | mecab
りん	副詞,助詞類接続,*,*,*,*,りん,リン,リン
ご	接頭詞,名詞接続,*,*,*,*,ご,ゴ,ゴ
ジュース	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS

IPA辞書に「りんご」が登録されていないわけではありません。バッチリ含まれています。

# ビルド前のIPA辞書のファイルが含まれているディレクトリで実行
$ grep りんご * -r
Noun.csv:りんご,1285,1285,7277,名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ

「りんご」自体の生起コストが高いこととか、「BOS」と「名詞,一般」の連接コストなどの諸々の事情によりこのような誤りが発生しています。これを是正する手段の一つが、「りんご」をもっと低い生起コストで登録することなのです。

とりあえず、生起コストを5000に落としてやってみます。下のコードでcatしてるようなテキストをファイルを作り、ユーザー辞書をコンパイルしてMeCabを動かしてみます。

# seedファイルの中身確認
$ cat apple1.csv
りんご,1285,1285,5000,名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
# コンパイル
$ /usr/local/Cellar/mecab/0.996/libexec/mecab/mecab-dict-index -d /usr/local/lib/mecab/dic/ipadic -u apple1.dic -f utf-8 -t utf-8 apple1.csv
reading apple1.csv ... 1
emitting double-array: 100% |###########################################|
done!
# 生成されたユーザー辞書を使って形態素解析(生起コストも表示)
$ echo りんごジュース | mecab -F %m\\t%c\\t%H\\n -u apple1.dic
りんご	5000	名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS

ユーザー辞書に登録した生起コスト5000のりんごを使って形態素解析されましたね。
この結果だけ見ると、システム辞書にある単語をユーザー辞書に登録したら情報が上書きされたように見えます。ただし、実際の動きはそうでは無いのです。

上書きされたように見えるだけで、システム辞書とユーザー辞書それぞれのりんごは別々の独立した単語として処理されていて、解には生起コストが低いユーザー辞書のりんごが採用されたというのが正確な動きになります。このことはN-Best解を表示すると確認できます。

$ echo りんごジュース | mecab -F %m\\t%c\\t%H\\n -N3 -u apple1.dic
りんご	5000	名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS
りん	4705	副詞,助詞類接続,*,*,*,*,りん,リン,リン
ご	6655	接頭詞,名詞接続,*,*,*,*,ご,ゴ,ゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS
りんご	7277	名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS

3番目の解として、システム辞書の生起コスト7277のりんごもバッチリ登場していますね。上書きされて消えているわけでは無いのです。

つまりユーザー辞書に単語を登録しても、元のシステム辞書より高い生起コストを設定してたらそれは1番目の解としては使われないということです。apple2って名前で、生起コスト8000のりんごを登録してやってみます。

$ cat apple2.csv
りんご,1285,1285,8000,名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
$ /usr/local/Cellar/mecab/0.996/libexec/mecab/mecab-dict-index -d /usr/local/lib/mecab/dic/ipadic -u apple2.dic -f utf-8 -t utf-8 apple2.csv
reading apple2.csv ... 1
emitting double-array: 100% |###########################################|
done!
$ echo りんごジュース | mecab -F %m\\t%c\\t%H\\n -u apple2.dic
りん	4705	副詞,助詞類接続,*,*,*,*,りん,リン,リン
ご	6655	接頭詞,名詞接続,*,*,*,*,ご,ゴ,ゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS

システム辞書だけの場合と結果変わりませんでしたね。このことからも、ユーザー辞書の単語がシステム辞書の単語を上書きする説は誤りであることがわかります。

実は元々、他のサイトの記事で単語が上書きされる説を見かけて、ユーザー辞書を複数登録したら最後にどっちの単語が残るんだ?という疑問からこの検証を始めています。
しかし、「そもそも上書きしないで別の単語として扱われる」が結論であれば、同じ辞書に複数回単語登録したり、ユーザー辞書を複数使用してそれぞれに重複してた単語があったとしても、別の単語として扱われて生起コストで判定される、と予想が付きます。

一応、「りんご」が2回登録された辞書も作って、上で作った2辞書と合わせて3辞書で動かしてみましょう。

$ cat apple3.csv
りんご,1285,1285,6000,名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
りんご,1285,1285,4000,名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
$ /usr/local/Cellar/mecab/0.996/libexec/mecab/mecab-dict-index -d /usr/local/lib/mecab/dic/ipadic -u apple3.dic -f utf-8 -t utf-8 apple3.csv
reading apple3.csv ... 2
emitting double-array: 100% |###########################################|
done!
$ echo りんごジュース | mecab -F %m\\t%c\\t%H\\n -u apple1.dic,apple2.dic,apple3.dic -N6
りんご	4000	名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS
りんご	5000	名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS
りんご	6000	名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS
りん	4705	副詞,助詞類接続,*,*,*,*,りん,リン,リン
ご	6655	接頭詞,名詞接続,*,*,*,*,ご,ゴ,ゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS
りんご	7277	名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS
りんご	8000	名詞,一般,*,*,*,*,りんご,リンゴ,リンゴ
ジュース	3637	名詞,一般,*,*,*,*,ジュース,ジュース,ジュース
EOS

3つの辞書に登録した4つのりんごと、システム辞書に元々あったりんごが全部使われていますね。

NBest解に登場する順番もシンプルに生起コストの順番になっています。
ユーザー辞書で指定した順番に上書きされて最後の辞書の一番最後の単語しか残らないんじゃ無いか、みたいなことを懸念していましたが、そんなことは全くありませんでした。

UAとGTMが導入済みのブログにGA4も設定してみた

2020年10月に正式にリリースされた GA4 (Google アナリティクス 4 プロパティ) をこのブログでも使うことにしました。このブログでは元々前世代のUA (ユニバーサルアナリティクス)を導入しています。現時点ではGA4よりUAの方が機能が充実しているように感じていますが、今後はGoogleさんがGA4の方に力を入れて改善していき、そちらをスタンダードにするということなので、使い始めた次第です。
ただ、いきなり乗り換えるのではなく当分並行稼働させていきます。

作業の前にこのブログでの設定状況についてです。このブログでは、Wordpressのプラグインを使って、GTM(Googleタグマネージャー)を導入し、タグマネージャーを経由してUAのタグを発火させていました。
参考: Google タグマネージャー導入
また、当然Googleアナリティクスのアカウント等も元々保有しています。無い場合はそこから作る必要があります。
あくまでもこの記事は、すでにUA+GTMが稼働中のページにGA4を追加する手順です。

では進めていきましょう。

手順1. GA4のプロパティを作成する。
以下の手順で作成できます。

GA4ではUAとは別のプロパティを作成し使用する必要があります。
1. Googleアナリテクスにアクセスする。
2. 左ペイン一番下の「管理」をクリックする。
3. プロパティ のところにある、 + プロパティを作成 をクリックする。
4. プロパティの設定をする。
– プロパティ名に自分がわかりやすい名前を入力する。(僕は「分析ノートGA4」にしました。)
– レポートのタイムゾーンは日本を選択
– 通貨に日本円を選択
5. 次へをクリック
6. ビジネスの概要設定画面が出てくるのでサイトの特性に合わせて適切なものを選びます。
– 悩んだのですが、業種はコンピュータ、電気製品にしました。
– 一人で更新しているので、ビジネスの規模は小規模-従業員数1〜10名にしています。
7. 利用目的を聞かれるので、該当するものを選ぶ。
– 自分は次の二つを選びました。
サイトまたはアプリでの顧客エンゲージメントを測定する
サイトまたはアプリの利便性を最適化する
8. 作成をクリックする

少しステップが多いですが、画面に従い順次行えば途中で迷うことはないと思います。

手順2. データストリームの設定
プロパティができたら続いてデータストリームを設定します。このブログはWeb版しか無い(アプリなど提供していない)のでWebのデータストリームを作成します。
上記のプロパティの作成から続けて行えますが、一度閉じてしまった場合は設定から開きましょう。
1. ウェブを選択する。
2. ウェブサイトのURLとストリーム名を入力します。URLはhttps://analytics-note.xyz ですが、 ストリーム名はどうするか悩みました。複数のストリームを同時に使う予定はなかったので、analytics-note としています。Webとアプリを両方分析する人はそれぞれ見分けられる名前が良いと思います。
3. ストリームを作成をクリックする。
4. 観測用のIDが生成されるのでメモしておきます。GTMで使います。
観測用のIDは G-{アルファベットと数字}の形式になっています。

以上で、GA側の設定は終わりです。あとはなんらかの方法で発行されたIDや、観測用のタグをブログの方に埋め込む必要があります。今回は導入済みのGTMを使いました。

手順3. GTMにGA4計測タグを追加

すでにGTMに作成済みのコンテナをそのまま使います。
1. GTM にアクセスする。
2. 既存のコンテナを選択する。
3. 左ペインでタグを選択し、新規をクリックする。
4. [タグの設定] をクリックして [GA4 設定] を選択する。
5. 先ほどの測定 ID「G-XXXXXXXXXX」を入力する。
6. トリガーをクリックする。
7. All Pagesを選択し、保存をクリックする。
8. デフォルトで、 Google アナリティクス GA4 設定 という名前が入ってたのでそのまま保存する。

これでタグが作成されたので、これを公開するための手順を続けていきます。
9. ワークスペースに戻ってプレピューをクリック。
10. Connect Tag Assistant to your site とメッセージが表示されたら、
https://analytics-note.xyz/ と対象サイトのURLを入力してConnectをクリックする。
11. そのブラウザでいくつかのページにアクセスすると、別のデバック用に開いていたブラウザのタブで開いていたページで発火したタグをみることができる。(昔のGTMは画面下部で確認していたので、この仕様が変わっていたようです。)
12. Google アナリティクス GA4 設定がFired(発火)になっているのを確認する。
13. ついでにWordpressの管理画面にもアクセスしてそこは発火しないことも確認する。
14. Tag Assistant の小さいウィンドウの Finish を押してプレビューを終了する。
16. 「公開」ボタンをクリックする。
17. バージョン名と説明を求められるので入力し、再度「公開」をクリックする。

以上で、GA4のが設定が完了し、データ収集が始まります。動作テストとして、リアルタイムビューを見てみるのがおすすめです。

追加で、最低限の設定として以下の設定を入れました。

データ保持期限を14ヶ月に伸ばす(デフォルトは2ヶ月)
こちらは、設定の、プロパティの データ設定 > データ保持 から設定できます。デフォルトの保持期間はかなり短いので伸ばしておいた方が良いでしょう。

また、Googleシグナルを有効にしました。
こちらも データ設定 > データ収集画面 から設定できます。

UAとGA4を並行してみていると、ユーザー数の集計値に差分が生まれていたり、なくなってしまった指標があったり、UAの方が用意されているレポートが多くて便利に感じたりと色々差があり、現時点ではまだUAの方が良いツールに感じることが多々あります。

ただ、Googleさんの方針として今後の開発はGA4の方に注力していくとのことですので、将来的に便利なツールになっていくことを期待しながら少しずつGA4に慣れていきたいと思います。

2022年のご挨拶と今年の方針

新年明けましておめでとうございます。本年もよろしくお願いします。

さて、今年のこのブログの更新方針について決めたのでまとめておきます。
昨年末の記事でも少し頭出ししていましたが、ブログに限らず今年の計画や目標について考え、今年1年はアウトプットよりもインプットを重視した年にしようと決めました。また、その内容もデータサイエンス関連に限らず幅広く吸収していく年にしたいです。

アウトプットの時間は減らしたいのとインプット内容にこのブログ記事につながるようなテーマの物が減るということで、このブログの更新ペースは落とします。昨年の半分くらいにして週1回更新、年間50記事程度を目標にゆっくりやっていこうと思います。もし書きたいことがありすぎて困るようなことになったらまたその時にペースを見直すかもしれませんが。

僕はもともと読書が好きで色々なジャンルの本を幅広く読んでいました。その後、2017年に転職してデータサイエンティストになってからこの5年ほどの期間、まずは仕事で使うデータ分析のスキルを優先しようということで読む本がほとんど広い意味でのデータサイエンス関連や、ドメイン知識としての人材業界関連の本ばかりになっていました。特にそれが不満というわけでもなく、どんどん新しい知識が身に付き、できることが増えていくことにやりがいも感じていました。この分野は本当に学ぶことが多く、この先も興味が尽きることはなさそうです。ただその一方で、趣味に関する本とか書店でたまたま見かけて興味を持った本とか話題のベストセラー等々の他の読みたい本を読むのが完全に後回しになってきたのも事実です。

今年もデータ分析の勉強は継続はしますし、今の時点で絶対読みたいと思ってる本はそこそこあるのですがが、それらを読むのは月に1〜2冊程度に抑えようと思ってます。そして浮いた時間はまた昔みたいに、仕事や実用性を無視して興味を持ったものを何でも読んでいく時間にします。

その他、流石に3年も運用しているとこのブログにも色々改善したい点あったり、内容が古くなってしまった記事などもあります。新規の記事を書く時間を減らした範囲内で、過去記事の見直しなどを含めたメンテナンスにも細々と着手しようと思います。例えば「プログラミング」っていう非常に雑なカテゴリに多くの記事が集中してしまっているのでこの辺の見直しもしたいです。

以上のような方針のためこのブログの更新は昨年に比べてゆっくりになりますが、本年もよろしくお願いいたします。

2021年のまとめ

2021年の最後の投稿になります。

本年も訪問者の皆様には大変お世話になりました。書いた記事が多くの方に読んでいただけたということはもちろんですが、土日祝日なども平日より少ないとはいえ多くのアクセスがあり、休日も技術的な調べ物をしている熱心な人たちがいると実感できることは自分が学習を続けていく上でも大きな励みになりました。

今年も1年間の振り返りをやっていきたいと思います。本年までの累積の記事数および、年間のアクセス数は次のようになりました。
– 累計記事数 514記事 (この記事含む。昨年時点 409記事)
– 訪問ユーザー数 200,661人 (昨年実績 146,674人)
– ページビュー 348,595回 (昨年実績 258,698回)

年間100記事更新の目標を無事に達成でき、それに伴って訪問者の数も増えているので達成感を感じています。

とはいえ、多くのpvを集めているのは古い記事が多く、今年特に力を入れて書いたMeCabのアルゴリズムの話や、AWSのAI関連サービスの話、トレジャーデータの小ネタなどはあまり読まれていないようです。テーマ選びなのか僕の文章力なのか、なんらかの課題はあるように感じています。

さて、恒例のよく読まれた記事ランキングを見ていきましょう。
今回は2021年1年間でのPV数によるランキングです。

  1. 【Amazon.co.jp限定】『ウマ箱2』第4コーナー アニメ『ウマ娘 プリティーダービー Season 2』トレーナーズBOX) (全巻購入特典「映像特典DVD描き下ろし全巻収納BOX」 引換シリアルコード付) [Blu-ray] (昨年1位)
  2. ネットワークグラフの中心性 (New)
  3. Pythonで連続した日付のリストを作る (New)
  4. pyenvで作成した環境を消す (New)
  5. TensorflowやKerasでJupyterカーネルが落ちるようになってしまった場合の対応 (New)
  6. numpyのpercentile関数の仕様を確認する (昨年4位)
  7. INSERT文でWITH句を使う (昨年7位)
  8. matplotlibでグラフ枠から見た指定の位置にテキストを挿入する (New)
  9. サブタレイニアン・ジャングル+7 (昨年3位)
  10. Pythonで多変量正規分布に従う乱数を生成する (昨年10位)

Googleアナリティクスで確認した時、1位と10位が昨年と同じなので今年もあまり変わり映えしないなという印象を持っていました。しかし、改めて昨年のランキングと比較してみると昨年ランクインしなかった記事が5記事も入っており意外と顔ぶれ変わってましたね。

このブログもこれで開設から丸三年になります。流石にネタ切れを感じる日もあるので来年の運用をどうしようかと考えています。(とはいえ、ブログネタのストックは今時点で40個程度はあるので本当の意味ではネタ切れしてないのですが、書きたいけどなかなか筆が進まないものやタイミングを逃した感があるのも多く難しいところです。)

来年も技術的なスキルアップを目指した学習はもちろん続けていきますし、仕事の中での疑問や課題感からネタが出てくることもあると思うので、ブログの更新自体は続けていきます。ただ、技術関連以外のインプットにももっと力を入れていきたいですし、休日の時間を今以上に読書や講座受講などに使いたいので、更新頻度は見直したほうがいいかもとは思っています。

この年末年始で来年をどう過ごすかを考えて、その中でブログの運用方針も決めたいと思います。

それではみなさん、今年も1年間ありがとうございました。良いお年を。

pipでライブラリをインストールする前に依存ライブラリを確認する

僕はAnacondaで環境を構築してcondaで運用しているのですが、どうしてもcondaでは入れられないライブラリがある時など、やむを得ずpipを使うことがあります。その場合、condaで入れられる限りの依存ライブラリを入れた後に必要最小限のライブラリをpipで入れるようにしているのですが、依存ライブラリの確認漏れ等があり、想定外のライブラリがpipで入ってしまうことがありました。(この運用もそろそろ限界を感じていて、次に環境を作り直す機会があったらpipで統一したいと思っています。)

問題の一つはpipでインストールする前に依存ライブラリを調べる方法が分かりにくかったことだと思っていたのですが、ようやく事前に調べかたがわかったのでそれを紹介します。

どうやら、PyPI の特定のURLでアクセスできるJSONファイルに、必要な情報が載っているようです。ここに書いてありました。
参考: PyPIJSON – Python Wiki

バージョンを指定しない場合は、
https://pypi.python.org/pypi/<package_name>/json
バージョンを指定する場合は、
https://pypi.python.org/pypi/<package_name>/<version>/json
というURLにアクセスすると、そのパッケージ(ライブラリ)の情報が取得できます。

試しに jupyter notebook (pip install notebook でインストールするので、ライブラリ名はnotebook)の情報ページである
https://pypi.python.org/pypi/notebook/json
にアクセスしていただくと分かりますが、かなりでかいJSONが得られます。

ここからテキストエディターで必要な情報を得るのは骨が折れるので、Python使って欲しい情報を探しましょう。

偶然見つけたのですが、 pprint というメソッドのドキュメントでの使用例がこのJSONの表示だったりします。そこでは urllibを使っていますがこれは若干使いにくいので僕はrequestsを使います。
参考: requestsを使って、Webサイトのソースコードを取得する

では、試しに notebook の 情報をとってみましょう。

import requests
package_name = "notebook"
url = f"https://pypi.org/pypi/{package_name}/json"
json = requests.get(url).json()
# このJSONはかなりでかい
print(len(str(json)))
# 113699
# JSONのkeys。 この中の info が必要な情報を含んでいる。
print(json.keys())
# dict_keys(['info', 'last_serial', 'releases', 'urls', 'vulnerabilities'])
# infoの下に、多くの情報がある。
print(json["info"].keys())
"""
dict_keys(['author', 'author_email', 'bugtrack_url', 'classifiers',
        'description', 'description_content_type', 'docs_url', 'download_url',
        'downloads', 'home_page', 'keywords', 'license', 'maintainer',
        'maintainer_email', 'name', 'package_url', 'platform', 'project_url',
        'project_urls', 'release_url', 'requires_dist', 'requires_python',
        'summary', 'version', 'yanked', 'yanked_reason'])
"""
# requires_dist が依存ライブラリの情報。リスト形式なので、順番に表示する
for requires_dist_text in json["info"]["requires_dist"]:
    print(requires_dist_text)
"""
jinja2
tornado (>=6.1)
pyzmq (>=17)
argon2-cffi
ipython-genutils
traitlets (>=4.2.1)
jupyter-core (>=4.6.1)
jupyter-client (>=5.3.4)
nbformat
nbconvert
nest-asyncio (>=1.5)
ipykernel
Send2Trash (>=1.8.0)
terminado (>=0.8.3)
prometheus-client
sphinx ; extra == 'docs'
nbsphinx ; extra == 'docs'
sphinxcontrib-github-alt ; extra == 'docs'
sphinx-rtd-theme ; extra == 'docs'
myst-parser ; extra == 'docs'
json-logging ; extra == 'json-logging'
pytest ; extra == 'test'
coverage ; extra == 'test'
requests ; extra == 'test'
nbval ; extra == 'test'
selenium ; extra == 'test'
pytest-cov ; extra == 'test'
requests-unixsocket ; (sys_platform != "win32") and extra == 'test'
"""
# requires_python で Pythonのバージョンの指定も見れる
print(json["info"]["requires_python"])
# >=3.6

extra がついているのはオプション付きでインストールする時に必要になる物なので、基本的に、次のライブラリが必要であることがわかりますね。
jinja2
tornado (>=6.1)
pyzmq (>=17)
argon2-cffi
ipython-genutils
traitlets (>=4.2.1)
jupyter-core (>=4.6.1)
jupyter-client (>=5.3.4)
nbformat
nbconvert
nest-asyncio (>=1.5)
ipykernel
Send2Trash (>=1.8.0)
terminado (>=0.8.3)
prometheus-client

ちょっとテストしてみましょう。 pyenv で新しい環境作って、notebook入れてみます。
(version 3.8.7と微妙に古いバージョン入れていますがこれは適当です。

# 新しい仮想環境を構築
$ pyenv install 3.8.7
# 環境切り替え
$ pyenv global 3.8.7
# ライブラリが何も入ってないことを確認(出力がない)
$ pip freeze
# notebook インストール
$ pip install notebook
# 依存ライブラリと共にインストールされたことを確認
$ pip freeze
appnope==0.1.2
argon2-cffi==21.3.0
argon2-cffi-bindings==21.2.0
attrs==21.2.0
backcall==0.2.0
bleach==4.1.0
cffi==1.15.0
debugpy==1.5.1
decorator==5.1.0
defusedxml==0.7.1
entrypoints==0.3
importlib-resources==5.4.0
ipykernel==6.6.0
ipython==7.30.1
ipython-genutils==0.2.0
jedi==0.18.1
Jinja2==3.0.3
jsonschema==4.3.2
jupyter-client==7.1.0
jupyter-core==4.9.1
jupyterlab-pygments==0.1.2
MarkupSafe==2.0.1
matplotlib-inline==0.1.3
mistune==0.8.4
nbclient==0.5.9
nbconvert==6.3.0
nbformat==5.1.3
nest-asyncio==1.5.4
notebook==6.4.6
packaging==21.3
pandocfilters==1.5.0
parso==0.8.3
pexpect==4.8.0
pickleshare==0.7.5
prometheus-client==0.12.0
prompt-toolkit==3.0.24
ptyprocess==0.7.0
pycparser==2.21
Pygments==2.10.0
pyparsing==3.0.6
pyrsistent==0.18.0
python-dateutil==2.8.2
pyzmq==22.3.0
Send2Trash==1.8.0
six==1.16.0
terminado==0.12.1
testpath==0.5.0
tornado==6.1
traitlets==5.1.1
wcwidth==0.2.5
webencodings==0.5.1
zipp==3.6.0

予想してたよりずっと多くのライブラリがインストールされましたね。どうやら依存ライブラリたちの依存ライブラリ、もちろんそれらの依存ライブラリも順次インストールされたようです。ただ、一つずつ確認したところ、JSONから取得した依存ライブラリは全て入ったことがわかります。

これは実験しておいてよかったです。必ずしも、JSONから得られたライブラリだけが入るわけではないことがわかりました。

もう一点補足しておくと、requires_dist には必ず値が入っているわけではありません。当然ですが依存ライブラリがないライブラリもあります。その場合は空配列になっているのかな、と思ったのですが、 null になるようですね。 NumPyなどがそうです。

package_name = "numpy"
url = f"https://pypi.org/pypi/{package_name}/json"
json = requests.get(url).json()
print(json["info"]["requires_dist"])
# None

以上で、pipインストール前にライブラリの依存ライブラリを調べられるようになりました。

ここで取得したJSONは他にも様々な情報を持っているようなので、それらも調べておこうと思います。

pandas.DataFrameのgroupby関数で計算した結果を各行に展開する

なんとなくドキュメントを眺めていたら、groupby().transform()っていう便利そうな関数を見つけたのでその紹介です。

DataFrameのgroupbyといえば、指定した列をキーとしてグループごとの合計や平均、分散、個数などの集計を行うことができる関数です。

通常は、集計したキーの数=グループの数の行数のDataFrameを戻り値として返してきます。

import pandas as pd
df = pd.DataFrame(
    {
        "category": ["A", "A", "A", "B", "B"],
        "amount": [100, 300, 100, 200, 200],
    }
)
print(df)
"""
  category amount
0        A    100
1        A    300
2        A    100
3        B    200
4        B    200
"""
print(df.groupby("category").sum())
"""
category
A            500
B            400
"""

ここで、この groupby して得られた集計値を、元のDataFrameの各業に展開したいことがあります。
そのような場合、僕はpd.mergeでデータフレームを結合するか、辞書形式に変換して結合することが多かったです。
例えば以下のようなコードになります。

# mergeで結合する場合
group_df = df.groupby("category").sum()
group_df.reset_index(inplace=True)
group_df.rename(columns={"amount": "category_amount"}, inplace=True)
print(pd.merge(df, group_df, on="category", how="left"))
"""
  category  amount  category_amount
0        A     100              500
1        A     300              500
2        A     100              500
3        B     200              400
4        B     200              400
"""
# 辞書を作ってマッピングする場合
group_df = df.groupby("category").sum()
sum_dict = group_df.to_dict()["amount"]
print(sum_dict)
# {'A': 500, 'B': 400}
df["category_amount"] = df["category"].apply(sum_dict.get)
print(df)
"""
  category  amount  category_amount
0        A     100              500
1        A     300              500
2        A     100              500
3        B     200              400
4        B     200              400
"""

書いてみるとこれらの手順を踏んでもそんなに複雑ではないのですが、やっぱり一発でできるともっと便利です。

そこで使えるのが、冒頭で紹介した、transformです。
参考: pandas.core.groupby.DataFrameGroupBy.transform

これは元のデータフレームと同じインデックスを持つデータフレームとして、GroupByの結果を返してくれます。ちょっとやってみます。

df = pd.DataFrame(
    {
        "category": ["A", "A", "B", "B", "B"],
        "amount": [100, 300, 100, 200, 200],
    }
)
# 元のDataFrameと同じ行数で、対応する行の"category"列の値が含まれるグループの合計を返す
print(df.groupby("category").transform("sum"))
"""
   amount
0     400
1     400
2     500
3     500
4     500
"""
# 元のDataFrameに合計値を付与したい場合は次のようにできる
df["category_amount"] = df.groupby("category").transform("sum")["amount"]
print(df)
"""
  category  amount  category_amount
0        A     100              400
1        A     300              400
2        B     100              500
3        B     200              500
4        B     200              500
"""

1行で済みましたね。

この新しく作った列を使えば、一定件数以下しか存在しないカテゴリの行を削除するとか、カテゴリごとにそれぞれの要素のカテゴリ内で占めてる割合を計算するとか、それぞれの要素のカテゴリごとの平均との差異を求めるとかそういった計算が非常に容易にできるようになります。

そしてさらに、このtransform とlambda関数を組み合わせて使うと、カテゴリの平均との差を一発で出す、といったこともできます。

df = pd.DataFrame(
    {
        "category": ["A", "A", "B", "B", "B"],
        "amount": [100, 300, 100, 200, 200],
    }
)
print(df.groupby("category").transform(lambda x: x-x.mean()))
"""
       amount
0 -100.000000
1  100.000000
2  -66.666667
3   33.333333
4   33.333333
"""

lambda 関数に渡されている x はそれぞれの行の値のように振る舞ってくれるにもかかわらず、同時に x.mean() でグループごとの平均を出すこともでき、その差分を元のDataFrameとインデックスを揃えて返してくれています。

これは使いこなせば相当便利なメソッドになりそうです。

MeCabで分かち書き済みの単語に対して品詞を判定する

MeCabで形態素解析してテキストを単語に分解するとき、分かち書きしたテキストと、品詞情報が得られます。その単語の出現頻度等を集計した後で、この単語はこの品詞、という情報を付与して絞り込み等をやりたくなったのでその方法をメモしておきます。

実は以前ワードクラウドを作った時に品詞別に色を塗るために似たようなコードを作っています。今回の記事はその改良版です。
参考: WordCloudの文字の色を明示的に指定する

この記事では次のようなコードを使いました。(参照した記事は先行するコードでMeCabのTaggerインスタンスを作ってる前提なのでその辺ちょっと補って書きます。)

import MeCab
tagger = MeCab.Tagger()
def get_pos(word):
    parsed_lines = tagger.parse(word).split("\n")[:-2]
    features = [l.split('\t')[1] for l in parsed_lines]
    pos = [f.split(',')[0] for f in features]
    pos1 = [f.split(',')[1] for f in features]
    # 名詞の場合は、 品詞細分類1まで返す
    if pos[0] == "名詞":
        return f"{pos[0]}-{pos1[0]}"
    # 名詞以外の場合は 品詞のみ返す
    else:
        return pos[0]

参照した記事で補足説明書いてますとおり、このコードは単語をもう一回MeCabにかけて品詞を取得しています。その時に万が一単語がさらに複数の形態素に分割されてしまった場合、1つ目の形態素の品詞を返すようになっています。

このコードを書いた時、単語がさらに分解されるってことは理論上はありうるけど、滅多にないだろう、と楽観的に考えていました。ところが、色々検証していると実はそんな例が山ほどあることがわかってきました。

例えば、「中国語」という単語がありますが、これ単体でMeCabに食わせると「中国」と「語」に分かれます。以下が実行例です。

# 形態素解析結果に「中国語」が出る例
$ echo "彼は中国語を話す" | mecab
彼	名詞,代名詞,一般,*,*,*,彼,カレ,カレ
は	助詞,係助詞,*,*,*,*,は,ハ,ワ
中国語	名詞,一般,*,*,*,*,中国語,チュウゴクゴ,チューゴクゴ
を	助詞,格助詞,一般,*,*,*,を,ヲ,ヲ
話す	動詞,自立,*,*,五段・サ行,基本形,話す,ハナス,ハナス
EOS
# 「中国語」がさらに「中国」 と「語」に分かれる
$ echo "中国語" | mecab
中国	名詞,固有名詞,地域,国,*,*,中国,チュウゴク,チューゴク
語	名詞,接尾,一般,*,*,*,語,ゴ,ゴ
EOS

「中国語」が固有名詞、地域、国と判定されるとちょっと厄介ですね。

他にも、「サバサバ」は「サバ」「サバ」に割れます。

$ echo "ワタシってサバサバしてるから" | mecab
ワタシ	名詞,固有名詞,組織,*,*,*,*
って	助詞,格助詞,連語,*,*,*,って,ッテ,ッテ
サバサバ	名詞,サ変接続,*,*,*,*,サバサバ,サバサバ,サバサバ
し	動詞,自立,*,*,サ変・スル,連用形,する,シ,シ
てる	動詞,非自立,*,*,一段,基本形,てる,テル,テル
から	助詞,接続助詞,*,*,*,*,から,カラ,カラ
EOS
$ echo "サバサバ" | mecab
サバ	名詞,一般,*,*,*,*,サバ,サバ,サバ
サバ	名詞,一般,*,*,*,*,サバ,サバ,サバ
EOS

他にも「ありえる」が「あり」「える」とか、「無責任」が「無」「責任」とか「ビュッフェ」が「ビュッ」「フェ」など、かなりの種類の単語が再度分解されます。

ということで、冒頭にあげた get_pos メソッドは思っていたよりもずっと誤判定しやすいということがわかってきました。

前置きが長くなってきましたが、このことを踏まえて、単語を再度分割することのないようにその単語としての品詞情報を取得できないかを考えました。

結局、制約付き解析機能を使って実現できそうだということがわかりました。
参考: MeCabの制約付き解析機能を試す

要するに、MeCabに渡された単語はそれで1単語だ、という制約を課せば良いわけです。

そのためには、-pオプション付きでTaggerを生成し、「{単語}{タブ}*(アスタリスク)」という形式のテキストに変換してTaggerでparseすれば大丈夫です。

Pythonのコードで書くと次のようになりますね。

import MeCab
tagger = MeCab.Tagger("-p")
def get_pos(word):
    # 制約付き解析の形態素断片形式にする
    p_token = f"{word}\t*"
    # 出力のEOS部分を捨てる
    parsed_line = tagger.parse(p_token).splitlines()[0]
    feature = parsed_line.split("\t")[1]
    # ,(カンマ)で区切り、品詞,品詞細分類1,品詞細分類2,品詞細分類3 の4項目残す
    pos_list = feature.split(",")[:4]
    # もう一度 ,(カンマ) で結合して返す
    return ",".join(pos_list)
# 利用例
print(get_pos("中国語"))
# 名詞,一般,*,*

上のコードは、品詞を再分類3まで取得するようにしましたが、最初の品詞だけ取得するとか、*(アスタリスク)の部分は省略するといった改修はお好みに合わせて容易にできると思います。

これで一旦今回の記事の目的は果たされました。

ただ、元の文中でその単語が登場したときの品詞が取得されているか、という観点で見るとこのコードも完璧ではありません。

表層系や原型が等しいが品詞が異なる単語が複数存在する場合、通常のMeCabの最小コスト法に則って品詞の一つが選ばれることになります。BOS/EOSへの連接コストとその品詞の単語の生起コストが考慮されて最小になるものが選ばれる感じですね。

分かち書き前のテキストで使われていたときの品詞が欲しいんだ、となると後からそれを付与するのは困難というより不可能なので、分かち書きした時点でちゃんと保存してどこかに取っておくようにしましょう。

あとおまけで、このコードを書いてる時に気づいたMeCabの制約付き解析機能の注意点を書いておきます。MeCabを制約付き解析モードで使っている時に、「表層\t素性パターン」”ではない”テキスト、つまり文断片と呼ばれている文字列を改行コード付けずに渡すとクラッシュするようです。
-p 付きで起動したときは、「表層\t素性パターン」形式の形態素断片か改行コードを必ず含むテキストで使うようにしましょう。

jupyter notebookでやると カーネルごとお亡くなりになりますので特に要注意です。

ちょっとコンソールでやってみますね。

$ python
>>> import MeCab
>>> tagger = MeCab.Tagger("-p")
>>> tagger.parse("中国語")
Segmentation fault: 11
# これでPythonが強制終了になる
$

改行コードつければ大丈夫であることは以下のようにして確認できます。

$ python
>>> import MeCab
>>> tagger = MeCab.Tagger("-p")
>>> tagger.parse("中国語\n")
'中国\t名詞,固有名詞,地域,国,*,*,中国,チュウゴク,チューゴク\n語\t名詞,接尾,一般,*,*,*,語,ゴ,ゴ\nEOS\n'

-p をつけてないときは別に改行コードなしのテキストも読み込んでくれるのでこれはちょっと意外でした。

制約付き解析(-p付き)でMeCabを使っている時に、「Segmentation fault: 11」が出たらこのことを思い出してください。

jupyter notebookのセルの出力をコードでクリアする

諸事情ありまして、jupyter notebookのセルの出力をクリアする方法を知りたくなったので調べました。
通常、jupyterではテキストを複数回にわたってprintしたり、matplotlibの図をいくつも出力するコードを1つのセルに書くと、出力したテキストなり図なりがダーっと続けて出てきます。
ちょっとこれを逐一クリアして新しいものだけ残すようにしたかったのです。
(こんなことする必要があることは滅多にないのですが。)

実は、クリアしたい対象がprintした1行以内のテキストの場合、それを実装する方法は過去に紹介したことがあります。それはprintメソッドのend引数を使ってprint後に改行コードを出力しないようにし、キャリッジリターン(“\r”)で出力位置を行頭に戻して空白で上書きしてしまうというものです。
これ使ってプログレスバーを作った記事が過去にありますね。
参考: printでお手軽プログレスバー

例えば、jupyterで次のコードを動かすと0~49まで数字がカウントアップします。
\r でカーソルを先頭にもどして、空白で埋めて、最後に次のprintのためにもう一回カーソルを先頭に戻しています。 end=”” はprint後に改行させない設定です。
sleep() は入れておかないと一瞬すぎて何も見えないのでウェイトとして入れています。

import time
for i in range(50):
    print("\r          \r", end="")
    print(i, end="")
    time.sleep(0.5)

ただ、さっきも書きましたがこの方法だと1行のテキストしか消せません。

複数行の出力だったらどうやって消すのかなと思って調べた結果見つかったのが、IPython モジュールにあった、 clear_output というメソッドです。
正確には、IPython.display.clear_output として実装されています。
ドキュメントはこちらです。
参考: Module: display — IPython 7.30.1 documentation

Clear the output of the current cell receiving output. とある通り、これが実行されるとそのステップが含まれたセルの出力だけを消してくれます。他のセルの出力は残してくれるので安心ですね。

wait (デフォルトはFalse)という便利な引数も持っています。これは、Falseにしておくと即座に出力を消すのに対して、Trueを渡すと、次の出力がくるのを待って消してくれます。連続して何かを出力するようなコードの場合、Trueにしておくと出力をスムーズに入れ替えるような動きになるのです。 Falseだと一瞬何も出力がない状態になるので次のセルとの間が詰まって 以降のセルがガクガク動きます。

以下のようにして、1秒ごとに現在時刻を表示する時計のような出力も出せます。

from IPython.display import clear_output
from datetime import datetime
import time
for i in range(10):
    print("現在時刻\n", datetime.now())
    clear_output(True)
    time.sleep(1)
"""
現在時刻
 2021-12-14 23:58:34.942141
上のような出力が1秒ごとに更新されて書き換えられる
"""

clear_outputはテキストだけではなく、図もクリアしてくれます。これを応用すると、パラパラ漫画のようにして手軽にアニメーションを作ることができます。

徐々にデータが増えて延びる折れ線グラフを描いてみたのが次のコードです。

import matplotlib.pyplot as plt
import numpy as np
# プロットする点を格納する配列
X = []
Y = []
for i in range(100):
    # 新しい点を追加する
    X.append(i)
    Y.append(np.random.randn())  # y座標には乱数入れる
    clear_output(True)  # それまでの出力をクリアする
    # グラフ作図
    fig = plt.figure(facecolor="w")  # 出力をクリアしたら改めてfigreオブジェクトが必要らしい
    ax = fig.add_subplot(111)
    ax.plot(X, Y)
    # グラフ表示
    plt.show()
    time.sleep(0.1)

このコードで jupyter 上にはアニメーションが表示できます。

実質的には clear_output(True) を差し込んでるだけなので、かなり手軽ですね。
ただ、これには一つ欠点もあって、jpyter上で簡易的に図を書いたり消したりしてアニメーションっぽく見せているだけなのでこのまま動画として保存することはできません。
(そのためこの記事にも結果の画像を貼っていません)

もし、gif形式などで保存したい場合は、少々面倒になるのですが、 ArtistAnimation などを使いましょう。過去の記事で取り上げています。
参考: matplotlibでgif動画生成

subprocessでパイプラインの実装

前回に続いてsubprocessの話です。予告していた通り、PythonでOSコマンドをパイプラインで繋いで実行する方法を紹介します。

まず前提ですが、subprocess.run にパイプラインを含むOSコマンドを渡してもそのままでは動きません。例えば実行中のプロセスから jupyter の文字を含む次のようなコマンドを考えます。

$ ps aux | grep jupyter
yutaro             762   0.0  0.8  4315736  67452 s000  S    11:55PM   0:03.71 {Pythonのパス} {pyenvのパス}/versions/anaconda3-2019.10/bin/jupyter-notebook
yutaro             910   0.0  0.0  4278648    712 s000  S+   12:04AM   0:00.00 grep jupyter

このコマンドをそのまま subprocess に渡しても動かないわけです。

import subprocess
cp = subprocess.run(
    ["ps", "aux", "|", "grep", "jupyter"],
    capture_output=True,
    text=True
)
# リターンコードが0ではない
print(cp.returncode)
# 1
# 標準出力は空っぽ
print(cp.stdout)
#
# 標準エラー出力にはエラーが出ている
print(cp.stderr)
"""
ps: illegal argument: |
usage: ps [-AaCcEefhjlMmrSTvwXx] [-O fmt | -o fmt] [-G gid[,gid...]]
          [-u]
          [-p pid[,pid...]] [-t tty[,tty...]] [-U user[,user...]]
       ps [-L]
"""

実は、パイプラインを含むコマンドを簡単に動かす方法はあります。それがshell引数にTrueを渡すことです。これは渡されたコマンドをシェルによって実行するオプションです。この場合、コマンドは空白で区切った配列ではなく一つの文字列で渡します。

cp = subprocess.run(
    "ps aux | grep jupyter",
    capture_output=True,
    text=True,
    shell=True
)
# リターンコードは0
print(cp.returncode)
# 0
# 標準出力に結果が入る
print(cp.stdout)
# 結果略。
# 標準エラー出力は空
print(cp.stderr)
# 

ただし、ドキュメントに「注釈 shell=True を使う前に セキュリティで考慮すべき点 を読んでください。」という注釈がついてるように、これはセキュリティ面で問題がある方法のようです。
参考: セキュリティで考慮すべき点
シェルインジェクションを避けるのはアプリ側の責任だって書いてありますね。この点気をつけて使いましょう。

さて、色々検証してみたのですが、 shell=True を使わなくてもパイプラインを実装する方法はあるようです。それは単純に標準入力を使う方法で、1個目のコマンドの標準出力を2個目のコマンドの標準入力に渡してあげます。

とりあえず、パイプラインではなく単一のコマンドで標準入力を使ってみましょう。macabコマンドに、いつもの「すもももももももものうち」を渡してみます。

runメソッドに標準入力を渡すには、 input という引数を使います。これで注意しないといけないのは、inputには”バイト列”でデータを渡す必要があることです。str型だとエラーになるので、encode() してから渡します。ただ、text=True も指定するときは逆にstrで渡さないといけないようですね。

text = "すもももももももものうち"  # 入力するテキスト
text_byte = text.encode()  # byte型にエンコード
cp = subprocess.run(
    "mecab",
    capture_output=True,
    input=text_byte  # 通常はbyte型で標準入力を渡す
)
# byte型でデータが返ってきているので、decode()して表示
print(cp.stdout.decode())
"""
すもも	名詞,一般,*,*,*,*,すもも,スモモ,スモモ
も	助詞,係助詞,*,*,*,*,も,モ,モ
もも	名詞,一般,*,*,*,*,もも,モモ,モモ
も	助詞,係助詞,*,*,*,*,も,モ,モ
もも	名詞,一般,*,*,*,*,もも,モモ,モモ
の	助詞,連体化,*,*,*,*,の,ノ,ノ
うち	名詞,非自立,副詞可能,*,*,*,うち,ウチ,ウチ
EOS
"""
# text=True を指定するときは str型で標準入力を渡す
cp = subprocess.run(
    "mecab",
    capture_output=True,
    text=True,
    input=text  # text=True を指定するときは str型で標準入力を渡す
)
# str型で格納されているのでそのままprintできる
print(cp.stdout)
"""
結果は同じなので略
"""

さて、標準入力の渡し方がわかったら、あとは先行するコマンドの標準出力を次のコマンドの標準入力に渡すだけです。

最初の ps aux | grep jupyter でやってみましょう。

cp1 = subprocess.run(
    ["ps", "aux"],
    capture_output=True,
    text=True,
)
cp2 = subprocess.run(
    ["grep", "jupyter"],
    capture_output=True,
    text=True,
    input=cp1.stdout  # 一つ目のコマンドの標準出力を渡す
)
print(cp2.stdout)
"""
yutaro             762   0.0  0.8  4315736  67720 s000  S    11:55PM   0:05.04 {Pythonのパス} {pyenvのパス} /versions/anaconda3-2019.10/bin/jupyter-notebook
"""

この記事の先頭のコマンドの結果と微妙に異なりますね。 grep jupyter のプロセスが出てきません。これは、ps aux だけ先行して動かし、その結果をもとにgrepしているので、厳密にはシェルでパイプラインしたのとは異なるからそうなっているのでしょう。

ただ、通常の用途であればほぼ同じ結果が得られると思います。
どうしても差分が気になるのであれば shell=Trueの方の方法を使うことも検討が必要でしょうね。

サンプルとして選んだコマンドがイマイチだったので、厳密にいうと再現できてないサンプルを提示してしまったのですが、このようにして、PythonでOSコマンドのパイプラインが再現できます。

Saucony メンズ US サイズ: 8.5 D(M) US カラー: ブラック

このブログの過去記事でもすでに使ったことがあるのですが、改めてsubprocessの使い方をまとめておきます。
ドキュメントはこちら。
参考: subprocess — サブプロセス管理 — Python 3.10.0b2 ドキュメント

subprocessは os.system を置き換えるために作られた新し目のモジュールらしいので、僕も新しい方法としてこれを使っていたのですが、Python 3.5 から subprocess に run() というメソッドが実装され、僕が書いていた方法はいつの間にか古い方法になってしまっていたようです。ドキュメントを少し引用します。

サブプロセスを起動するために推奨される方法は、すべての用法を扱える run() 関数を使用することです。より高度な用法では下層の Popen インターフェースを直接使用することもできます。
run() 関数は Python 3.5 で追加されました; 過去のバージョンとの互換性の維持が必要な場合は、古い高水準 API 節をご覧ください。

subprocess — サブプロセス管理 — Python 3.10.0b2 ドキュメント

ちなみに、古い方法では、コマンドを実行したいだけなら call 、出力を得たかったら getoutput を使っていました。

import subprocess
# mkdir sample_dir を実行。 空白を含むコマンドは空白で区切って配列で渡す
subprocess.call(["mkdir", "sample_dir"])  # 成功すれば戻り値 として 0が帰ってくる
# 標準出力の結果が欲しい場合は getoutput メソッドを使う
output_str = subprocess.getoutput("ls -la")
print(output_str)

さて、本題の新しい方法の run の説明に入りましょう。
このメソッドはどうやら非常に多くの種類の引数をとるそうで、ドキュメントでも、「上記の引数は、もっともよく使われるものだけ示しており、後述の よく使われる引数 で説明されています」とある通り一部の引数しか掲載されていません。それでもこれだけ書かれています。

subprocess.run(
    args, *, stdin=None, input=None, stdout=None,
    stderr=None, capture_output=False, shell=False, cwd=None,
    timeout=None, check=False, encoding=None, errors=None,
    text=None, env=None, universal_newlines=None,
    **other_popen_kwargs)

基本的には、コマンドをスペースで区切って配列にし、callの時と同じように渡せば良いようです。touchでファイルを作ってみます。

subprocess.run(["touch", "sample_dir/sample1.txt"])
# CompletedProcess(args=['touch', 'sample_dir/sample1.txt'], returncode=0)

上のコード例は jupyter notebookで動かした時のイメージなので、勝手に最後のメソッドの戻り値がnotebookに表示されたのですが、これでわかる通り、 CompletedProcess というクラスのインスタンスを返してくれます。lsなどの標準出力を取りたい場合は、 capture_output を Trueにしておきます。

cp = subprocess.run(["ls", "-la", "sample_dir"])
print(cp.stdout)  # capture_output を指定しないと、stdoutに結果が入ってない
# None
cp = subprocess.run(["ls", "-la", "sample_dir"], capture_output=True)
print(type(cp.stdout))  # 結果はバイト型で入ってくる
# <class 'bytes'>
print(cp.stdout.decode())  # 文字列に変換したい場合はdecodeする
"""
total 0
drwxr-xr-x  3 {ユーザー名}  {グループ名}   96 12  8 00:41 .
drwxr-xr-x  7 {ユーザー名}  {グループ名}  224 12  8 00:52 ..
-rw-r--r--  1 {ユーザー名}  {グループ名}    0 12  8 00:41 sample1.txt
"""
cp = subprocess.run(["ls", "-la", "sample_dir"], capture_output=True, text=True)
print(type(cp.stdout))  # text=True も指定しておくと、str型で得られるのでdecodeがいらない。
# <class 'str'>
print(cp.stdout)
# (上のと同じなので) 出力略 

この、capture_output は 3.7 で追加されたそうで runメソッド本体より新しいオプションになります。 capture_output を使わない場合、 stdout と stderr にそれぞれ標準出力と標準エラー出力を指定することになります。ドキュメントでは PIPE とか STDOUT とかを指定するよう書かれていますがこれらは、 subprocess.PIPE, subprocess.STDOUT のことです。
両引数にそれぞれsubprocess.PIPE を指定すると、capture_output=Trueにしたのと同じ動きになります。stdout=subprocess.PIPE と stderr=subprocess.STDOUT の組み合わせで指定すると、標準出力と標準エラー出力を両方ともstdoutに格納してくれます。

ちょっと tarコマンドあたりでやってみます。出力先ファイルを – (ハイフン) にしておくと tar は結果のアーカイブをファイルを作らずに結果を標準出力に出力します。
また、 v をつけておくと標準エラー出力に処理したファイル情報を出すので subprocess の挙動確認にちょうど良さそうです。

# capture_output=True, と stdout=subprocess.PIPE, stderr=subprocess.PIPE は同じ動き
cp = subprocess.run(["tar", "cvf", "-", "sample_dir"],
                    stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print(cp.stdout)
"""
{tarファイルの中身}
"""
print(cp.stderr)
"""
a sample_dir
a sample_dir/sample1.txt
"""
# stderr=subprocess.STDOUT とすると、標準エラー出力も標準出力に追記される
cp = subprocess.run(["tar", "cvf", "-", "sample_dir"],
                    stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
# 標準エラー出力に出るはずだったアーカイブ対象情報もこちらに出る
print(cp.stdout)
"""
a sample_dir
a sample_dir/sample1.txt
{tarファイルの中身}
"""
# stderrは空
print(cp.stderr)
# None

最後に、コマンドがエラーになった時の処理です。
基本的には、 CompletedProcess が returncode という要素を持っているので、これで判定すれば良いと思います。 たとえば、 sample_dir というディレクトリは上のサンプルコードで作ったのが既にあるので、もう一度作ろうとすると失敗し、returncode が1になります。

cp = subprocess.run(["mkdir", "sample_dir"])
print(cp.returncode)
# 1

逆にいうと、コマンドが失敗してもPythonとしては特にエラーにならず、それ以降もコードがあるのであればプログラムは走り続けるということです。コマンドを実行したらreturncodeを確認して失敗してたら止めるような処理を明示的に作っておかないと予期せぬバグに繋がることもあるので気をつけましょう。

returncodeを確認するのではなく、コマンドが失敗したら例外を上げて欲しい、という場合は check=Trueを指定しておきましょう。

try:
    cp = subprocess.run(["mkdir", "sample_dir"], check=True)
except Exception as e:
    print(e)
    # Command '['mkdir', 'sample_dir']' returned non-zero exit status 1.

ちなみにですが、存在しないコマンドを渡すと check=True を指定していなくても例外が上がります。コマンドが存在しないのと、コマンドの結果がエラーになったのは明確に違う扱いになっているようですね。

try:
    cp = subprocess.run(["abcdefg", "aaaa"])
except Exception as e:
    print(e)
    # [Errno 2] No such file or directory: 'abcdefg': 'abcdefg'

これで簡単なコマンドであれば subprocess.run を使って実行できると思います。

あと、パイプラインを使うようなやり方について現在調べて検証しているので次の記事で紹介したいと思っています。

Oiumov グラディエーターサンダル レディース ドレッシーサマーフラット Tストラップ ジップアップ オープントゥ ビーチシューズ フリップフロップサンダル レディースEXO2-MOU-06-XXL サカタのタネ より快適に作業ができます テリークロス EXOエンボスパーム スウェットワイプ 2519円 EXO モダンユーティリティグローブ 特定の作業に特化しています 複雑な作業が必要なときに手袋を取り外す必要はありません ひまわり ベーシックなアウトドアのニーズに合わせた快適なアクセス手袋 商品の説明 これにより 00906736 切り花用ミックス Iron 実咲花6736 従来の作業手袋よりもフィットするように設計されています スエードカフプラー Ironclad Clad グローブは幅広いサイズと色で展開しておりしんちんちん 水槽 ライト LEDアクアリウム ライト 水槽照明60~70CM水槽対応 白/青LED水槽ランプ 調節可能 防水仕様 熱帯魚 ライト 水草育成 淡水&海水両用 16Wティッシュケース 取り出す際はティッシュボックスを後方にずらして引き抜く コピー品の恐れがありますのでご注意ください どんな場所においても優雅な雰囲気を演出 高さ約5.3cm迄の一般的な薄型サイズのティッシュボックスに対応しています 山崎実業 切り花用ミックス ブラック 高さ5.3cmまでの一般的な薄型サイズのティッシュボックスに対応 スタンド式なのでドレッサーや洗面台にも デザイン ■箱サイズ:13×25.5×11cm 約340g 置き場所に困らないスタンド式は スタンド式なので置き場所にも困りません インテリアの一部として存在感を放つ 原産国:中国 エレガントな雰囲気を漂わせるティッシュケース 中国製 実咲花6736 1111円 メーカーより 約13X11X25.5cm ホワイト 340g■商品:約13×25.5×11cm ドレッサーや洗面所に置いても便利 ※販売元 ABS樹脂 商品重量 ティッシュボックスにも手を抜かずインテリアに 材質:ABS樹脂 6414 材質 対応サイズ サイズ:幅13×奥行き11×高さ25.5cm ティッシュボックスは下方向から完全に収納されるまで押し込む 6415 ひまわり サカタのタネ 商品サイズ 本体:ABS樹脂 発送元が日本国外の場合 商品の説明 ダイヤ 00906736 ※高さ5.3cmまでの一般的な薄型サイズのティッシュボックスに対応 機能性 上品でスタイリッシュなダイヤカットの立体感あるデザイン スタンド式で使いやすい ティッシュボックスの着脱方法 すっきりとしたスタイルと光沢のあるダイヤ柄のデザインが ティッシュケースとしてだけではなく【Disport ONE社オリジナル】 iPhone13 / 12 シリーズ(※ iPhone5/旧SE) 対応ストラップ ホルダー ストラップホール (13/12シリーズ全機種対応) 取り付けネジ付属 .Pat※モデル年式によっては形状が異なる場合が御座いますので ジョグポシェ 04-15 ジョグ 12-15 VOX 商品の説明 ジョグクールスタイル サカタのタネ M 二輪自動車整備士有資格者の指導 05-06 ジョグデラックス が出るまで過激なブレーキングは避けて下さい SA39J SE53J SA10J 07-15 低中速から高速まで安定した制動力と耐フェード性 SA26J ジョグZRスペシャルエディション 5GD5 モデル年式によっては形状が異なる場合が御座いますので 01-07 BJ ビーノ125 R スペースイノベーション ビーノ リモコンジョグ 5GD4 02 リモコンジョグZRエボリューション 交換時期です ビーノデラックス 14 ベーシックジョグ 接地面とローターが馴染む エボリューション 5AUE 制動距離が伸びた 免責 SA24J 1095円 SA37J シグナスZ SA16J 00-02 ウェット時の安定性を発揮し幅広い走行に対応致します 02-06 切り花用ミックス SA36J ジョグZ2 重要保安部品の為オートバイショップ又は 04-07 ブレーキの遊びが大きくなった等の症状はブレーキシューの点検 形状をご確認下さい XF50L 09-15 ジョグZR J ビーノクラシック VOX-34 実咲花6736 ドラムブレーキシュー 04-09 K 06-15 参考車種適合 SA44J 00906736 アクシストリート H L 05-10 N 5AUF ジョグC 01-04 ひまわり 監督の下お取り付け下さい 効きが悪い ご購入前に必ずご自身のオートバイにて SA08J ビーノモルフェ 13 EV-243S 必ずお読みください 03-07 10-15 G リモコン仕様 BW'S 慣らしは不要ですがローターとの当たり VOXデラックス EVOLUTION SA31J Famp;R ご注意 Putco 88855 ロッカー サイドベッドレール ブラックパウダーコート ペア ロッカー サイドベッドレールBuilt イルカのブラックエッチング 6オンス プレミアムグレードのステンレススチール製 ひまわり ピンク そのかわいくて遊び心のある外観は " キャプティブトップ レザーステンレススチールフラスコwith 高光沢仕上げ SPピンクはすべての人に勝ちです 商品の説明 SPピンク 00906736 容量6オンス inシガレットケース Productsで提供する最も魅力的なパッケージの1つで この素晴らしい6オンスのフラスコを囲む 実咲花6736 Visol 4257円 ふわふわのピンクコーティングの本革 サカタのタネ 切り花用ミックス タバコ好きにとって全く新しいレベルの利便性を追加する素晴らしい追加機能を備えています:シガレットケース内蔵です SPピンクは丈夫で信頼性があります【無添加/梅干し】紀州梅香の特別な上質梅干し 1kg(500g×2)(塩分約3%の減塩)<中~大粒>Ageless Dew dewy use. to fullness Dry visibly body Saffron youth. wrinkles by ひまわり regular lines face 00906736 oils saffron replenish 実咲花6736 sustain 799円 light-feeling reduced and skin's moisturizer cream This turmeric is 50g 商品の説明 pure Biotique pistachio wild extracts blended 切り花用ミックス of サカタのタネ are with help well almond as --?????????30 lb??26 " x7 " x6 – 1 / 4????????ハンドバッグ A4サイズ収納可能 表示と違うことがございます フィレンツェにて創業されたイタリアを代表するブランドです 商品紹介 持ち手の全長:43cm のハンドバッグです A4サイズも収納可能で さわり心地の良い ポケットの数:1 並行輸入品 旅行のサブバッグにも最適でプレゼントにもオススメな商品です 形状記憶性に優れた高機能な素材はゲラルディーニならでは ※並行輸入品の為 1885年工芸家のガリバルド 11248円 商品の説明 荷物をたっぷり入れる事が出来ます シリーズです サカタのタネ PC収納可能 日常使いやビジネスシーンはもちろん 留め具の種類: SOFTY A4サイズ対応 耐久性 GHERARDINI ソフティ と呼ばれるポリエステルとポリウレタンを使用したシリーズが有名です GH0323TP とは 仕様が変更される場合がござます 表地: ブランド紹介 ポリウレタンコーティング 軽量性 ※入荷時期により 生産国が多岐にわたり 金具 実咲花6736 ゲラルディーニ 外側0 収納可能サイズ: ポリエステル 重量:320g 特に軽くて丈夫で汚れにくいのが トートバッグ ひまわり 内側1 ゲラルディーニがイタリア 00906736 タテ34cmxヨコ39cmxマチ12cm 切り花用ミックス シンプルなデザインと使い勝手の良さで幅広い年代から支持されている ポリウレタンコーティング素材で大人気のSOFTYFor Fire HD 8 2020 / Fire HD 8 Plus ガラス フィルム HD 8 2020 フィルム 日本旭硝子素材AGC 強化ガラス Fire HD 8 2020 保護フィルム 業界強硬度9H 指紋付着防止 貼り付け簡単 気泡ゼロ 飛散防止 撥油性 液晶保護フィルム Fire HD 8 2020ロックソリッドスチール 妥協のない製品です デリケートな表面に最適なコンピュータ バックセーバー – 工業用強度 このモニタースタンドを他のノートパソコンやモニタースタンドよりも素早く組み立てることができます 44ポンドの揺れ防止: Solid 5 改善された循環を最適化した表面で作りました 安定 実咲花6736 保持 私たちは1つの問題に気づいています 簡単かつ高速な高さ調節 使用してください 最も便利な場所にコンピュータースタンドを外すだけです 2個パック をクリックしてください スライドすることがありません カートに入れる 最もスタイリッシュな仕上がりとスマートなデザインをうっとり選び 時間の経過と手間を省く創造を楽しく選ぶ一方 それを置き換えることです スタンドは ひまわり このノートパソコンスタンドは Unstoppable Evoomi 最もタフな素材 頑丈 最適な目から画面までの姿勢レベルを実現し もう二度と考えることはありませんか? REMOVE デバイスが揚げず ねじ込み式の脚 準備ができたら 00906736 本の脚をねじ込むだけで HDスチール は 大好き 30秒の組み立て:電球をねじ込むことができる場合 Steelは軽量の携帯性を兼ね備えています エネルギーと快適さを向上させます 道具やスキルは不要です スタイリッシュなブラックマットノートパソコンスタンドです 壊れ このデスク用モニタースタンドは 手 プリンターやタブレットを注文するよりも難しいことは 当社はお客様のニーズと当社の間に壁を設置することを拒否しています Evoomiでは ぜひ これまで使ったことのない最高のオフィス そうでなければ当社が交換または全額返金をさせていただきます ノートパソコンライザーを購入するのが好きだろう Workdays 表面から飛び出してデバイスを送ることがありません ですから 当社は長期にわたって運搬できるよう お客様の満足 考え抜かれたデザイン 長い作業日でもあなたを強力に維持します 調節可能なノートパソコンライザーシェルフ あなたが恋に落ちたら 3 Star ノートパソコンスタンド 曲げ 切り花用ミックス Integrity ラップトップ 商品の説明 調整と作業ができます あなたの生活に乗り込めます オーバーヒートなし:3.9インチ ぐらつき これが適合するか確認: 循環最適化プラットフォームを誇り 負荷 弓 デスクトップ 幼稚園の組み立ては簡単です そのため 目の疲れを緩和し デスク TO 4262円 ### EVOOMI OptiHeight デスク用 ライザースタンド モデル番号を入力してください モニターライザー コンピューターライザーを調整するだけです Service 方法一歩一歩一歩で笑顔で優れたサポートを期待しています サカタのタネ Smile モニター ぜひお買い求めください 屋外 つの高さを素早く調整し ラップもしません 背中 そのためあなたの最初の取引であっても 脚 Strain オフィス救世主を創り出し カーペットを燃えずにデバイスが過熱するのを防ぎます ワークプレースを保護 超高密度でありながら軽量で動きやすいこの工業グレードのスチールコンピュータモニタースタンドライザー2個パックは 以下に適合します: . ライザーであると言えるでしょう 滑り止めの足 熱発散性 5つ星のサービス Happier どのコンピューター Less これ以上簡単です 5.5インチに調節可能 - iMac 調節可能コンピュータスタンドで a プリンター 結論なし 破損 コンピューターモニタースタンド きっとこのノートパソコンライザーを気に入っていただけるはずです ノートパソコン 8 より高い生産性を意味し 曲がり 滑り止め 首 4.7インチ へこみ 仕事 with このデスクトップ Rockmewantブラック人工レザーステアリングホイールカバーfor Mercedes Benz w211 e230 e280 e350 2006 – 2009年/ cls350 cl500 2005 – 2008 / g500 g55 AMG 2007 – 2012 / sl350 2004 – 2007 / CLK 200 240 280 350 2004 – 2006スリップオン 留め具の種類: 00906736 Forever 3 バランスと安定性を提供し スキニージーンズの4シーズン着用に最適 100%合成 アンクルストラップ サカタのタネ 実咲花6736 ヴィーガン特許 人工 耐水性能なし ストラップの種類: レディース ヒールのタイプ: マストアイテム: 靴幅: ヒールの高さ: ウェッジパンプス あなたの服装に不可欠な靴: ウェッジ スカート ソール素材または裏地: 表地: ひまわり 3399円 インチ M 3インチのウェッジヒールが快適さを損なうことなく高さを提供します このゴージャスな履きやすい靴は あなたのワードローブにハイトを加えるのに必須のアイテムです メイン素材: Link 一日中歩く快適さとかかとをサポートします 一年中着用するのに最適です 輸入品 ピープトウ きっと気に入るでしょう: 切り花用ミックス 生地を使用したエレガントなウェッジポンプ ゴム 快適: ドレス 商品の説明